

Accepted Manuscript

Exact methods for the quay crane scheduling problem when tasks
are modeled at the single container level

Mohamed Kais Msakni, Ali Diabat, Ghaith Rabadi,
Mohamed Al-Salem, Mariam Kotachi

PII: S0305-0548(18)30189-8
DOI: 10.1016/j.cor.2018.07.005
Reference: CAOR 4512

To appear in: Computers and Operations Research

Received date: 23 January 2018
Revised date: 29 June 2018
Accepted date: 5 July 2018

Please cite this article as: Mohamed Kais Msakni, Ali Diabat, Ghaith Rabadi, Mohamed Al-Salem,
Mariam Kotachi, Exact methods for the quay crane scheduling problem when tasks are modeled at the
single container level, Computers and Operations Research (2018), doi: 10.1016/j.cor.2018.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cor.2018.07.005
https://doi.org/10.1016/j.cor.2018.07.005

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• The scheduling problem of quay cranes in container terminal is studied.

• Different technical constraints related to the quay cranes are considered.

• Two exact methods are proposed to provide optimal schedules.

• A construction heuristic is developed to provide near-optimal solutions.

• Computational experiments show the efficiency of the proposed methods.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Exact methods for the quay crane scheduling problem
when tasks are modeled at the single container level

Mohamed Kais Msaknia,∗, Ali Diabatb,c, Ghaith Rabadid, Mohamed
Al-Salema, Mariam Kotachid

aDepartment of Mechanical & Industrial Engineering, Qatar University, Doha, Qatar.
bDivision of Engineering, New York University Abu Dhabi, Saadiyat Island, 129188, Abu

Dhabi, United Arab Emirates.
cDepartment of Civil & Urban Engineering, Tandon School of Engineering, New York

University, Brooklyn, NY 11201, United States of America.
dDepartment of Engineering Management & Systems Engineering, Old Dominion

University, Norfolk, VA 23529, United States of America.

Abstract

The scheduling of quay cranes (QCs) to minimize the handling time of a berthed
vessel is one of the most important operations in container terminals as it im-
pacts the terminal’s overall productivity. In this paper, we propose two exact
methods to solve the quay crane scheduling problem (QCSP) where a task is de-
fined as handling a single container and subject to different technical constraints
including QCs’ safety margin, non-crossing, initial position, and nonzero travel-
ing time. The first method is based on two versions of a compact mixed-integer
programming formulation that can solve large problem instances using a general
purpose solver. The second is a combination of some constraints of the proposed
mathematical model and the binary search algorithm to reduce the CPU time,
and solve more efficiently large-sized problems. Unlike existing studies, the com-
putational study demonstrates that both methods can reach optimal solutions
for large-sized instances and validates their dominance compared to an exact
model proposed in the literature which finds solutions only for small problems.

Keywords: Scheduling, Container terminals, Quay crane scheduling problem,
Mixed-integer programming

1. Introduction

The recent rapid growth in the global economy in the last two decades would
not have been possible without the increased capacity and efficiency of maritime
systems including ports. Transporting goods by water remains by far the most
economical mode of transportation. Governments and industries have been

∗Corresponding author
Email address: msakni.kais@qu.edu.qa (Mohamed Kais Msakni)

Preprint submitted to C&OR July 5, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

investing heavily in expanding and modernizing ports’ infrastructures, the stan-
dardization of equipment, and implementation of new technologies. Examples
of deep-sea ports with high capacity include ports of Singapore, Shanghai, Jebel
Ali in the United Aarab Emirates, and recently Hamad Port in Qatar. Manag-
ing operations at such mega ports can be very complex, and when most ports are
part of a global economy, the speed at which products move at ports becomes
very important as inefficiency is very costly in such systems. However, it is
not feasible to continuously add resources to ports to increase their throughput
because such resources are capital intensive, and in many cases, require space
that can be scarce. Therefore, it is important to optimize the existing resources
and increase efficiencies and throughput by managing operations intelligently.

In this paper, we focus on the scheduling of the quay cranes (QCs), which
are dockside gantry cranes that load and unload containers onto and off of
vessels and constitute one of the most expensive pieces of equipment in any
port. Hence, the objective is to minimize the total time QCs take to process a
vessel. In fact, their efficiency is considered a determining factor in measuring
the overall terminal productivity according to Chung and Chan (2013).

There are two main decisions to make with regard to QCs: the first is assign-
ing cranes to berthed vessels, which is known as the Quay Crane Assignment
Problem (QCAP) and the second is partitioning the tasks of loading/unloading
containers between all assigned QCs and determining their processing sequence.
The latter is known as the quay crane scheduling problem (QCSP).

QC assignment to vessels is performed by a port operator after allocating
vessels to berths at specific times. This process considers different factors in-
cluding the type of containers, crane availability, and the possibility of moving
a QC from one vessel to another during the service process. Effective allocation
and scheduling of QCs can significantly increase terminals’ throughput as they
reduce vessels’ berthing times.

Before the work on a vessel begins, the list of containers to be loaded/
unloaded is provided by a shipping company. This list is known as the load
profile which specifies the containers to be operated as well as their location.
The containers are moved from the vessel to trucks or the yard, and vice versa
using QCs which are mounted on a single rail track to move alongside the quay
without passing each other. This limitation is commonly enforced through non-
crossing constraints. In addition, and for safety reasons, two adjacent QCs have
to keep a minimum separation distance during the work, referred to as safety
margin. A single task of a QC differs from an operation manager to another.
In some cases, it is defined as a cluster of containers located in the same area
of the vessel resulting in what is known as container group operations. In other
cases, one bay (segment) of a vessel is considered as one block and a task refers
to processing all containers of the same bay before the QC moves to another
bay. This type is known as complete bays. Finally, there is a case which is
referred to as container operation where a task is related to only one container.
In this configuration, a QC can move to another bay without completing the
processing of all containers of the current bay. As a result the tasks of the
same bay can be split to more than one QC, which may produce in better

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

distribution of the workload that in turn may impact the total processing time
of a vessel. The objective in the QCSP is to find the distribution of QCs that
fulfills all transshipments of containers while satisfying the different technical
requirements. In most cases, the performance of QC schedules is measured
by the time required to handle a vessel. By minimizing this time, the vessel
would have an earlier departure, which allows additional vessels to berth, and
as a result, increases the terminal’s throughput. This performance criterion of
minimizing the completion time of the last task is referred to as the minimization
of the makespan. Other measures such as minimizing the idle time of QCs
or minimizing the moves of QCs between vessel segments can be considered.
Nonetheless, the objective of such measures lies with the departure time of a
vessel.

The aim of this research is to investigate the QCSP by considering different
practical aspects with the objective of minimizing the makespan. The main con-
tribution of this paper is to develop new methods based on a new representation
of the problem that allows for obtaining exact solutions for large-sized problems
in a reasonable amount of time. Our findings are confirmed by a computational
study, in which our proposed methods are compared to current results in the
literature.

This paper is organized as follows: Section 2 presents a literature review
for research related to the QCSP. The problem characteristics are described in
Section 3. The proposed methods to solve the problem under consideration are
discussed in Section 4. Section 5 presents the results of our experiments on
benchmarking instances. The conclusion and directions for future research are
discussed in Section 6.

2. Literature review

The seaside operations optimization has been an active field of research that
aims at improving operations efficiency especially with the impressive growth of
maritime trade activities. For a comprehensive review of the different models
and approaches used to address quay problems, the reader is referred to the
surveys of Bierwirth and Meisel (2010, 2015). Although some research addressed
the integrated operations for seaside problems (e.g. Diabat and Theodorou
(2014); Fu et al. (2014); Msakni et al. (2016); Agra and Oliveira (2018)) or
landside problems (e.g. Saini et al. (2017)), we focus in this review on the work
exclusively related to the QCSP.

Kim and Park (2004) initiated a stream of works for the single ship QCSP
where a task is defined as a container group. The set of containers that belong to
the same group has to be processed simultaneously and without preemption. In
addition, there is a precedence relation between the container groups as well as
a non-simultaneity relation, in which it is not possible to process two container
groups located at adjacent bays at the same time. A pre-assigned number of
QCs is assumed to be available to perform the loading and unloading of tasks
when they become ready. The problem with these specifications is referred to
in the literature as the group container QCSP.

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Kim and Park (2004) formulated this problem using a mixed-integer pro-
gramming (MIP) model that considers non-crossing, QC traveling time, and
safety margin constraints. Later, this model was subject to many improve-
ments in the literature, e.g. Moccia et al. (2005), Bierwirth and Meisel (2009).
Nonetheless, all proposed models fail to solve medium- and large-sized instances
and consequently heuristic solution methods have been developed. Sammarra
et al. (2007) proposed a two-stage problem decomposition that was solved using
a Tabu Search algorithm enhanced by a local search procedure. Chung and
Choy (2012); Kaveshgar et al. (2012); Chung and Chan (2013) implemented
different versions of a Genetic Algorithm for the problem. Nguyen et al. (2013)
developed an evolutionary heuristic based on Genetic Algorithm and Genetic
Programming. Izquierdo et al. (2011) proposed another variant of evolutionary
heuristic, called Estimation of Distribution Algorithms, which generates new
solutions using a probabilistic model that is constantly updated with the statis-
tical information of the individual solutions. Due to the variety of the proposed
models, Meisel and Bierwirth (2011) attempted to propose a unified platform
for the evaluation of mathematical models and solution approaches.

The group container QCSP as defined by Kim and Park (2004) was subse-
quently extended in the literature to consider other characteristics. Chen et al.
(2011) addressed the indented berth QCSP, in which QCs can simultaneously
operate on both sides of the vessel in order to reduce the handling time. In other
works, QCs were subject to time windows availability, initial bay position, and
unidirectional movement. Many techniques have been proposed to solve this
problem variant: Meisel (2011) proposed a tree-search solution method, Monaco
and Sammarra (2011) implemented a Tabu Search algorithm, Guo et al. (2013)
presented a modified generalized extremal optimization (MGEO), Chen et al.
(2014) developed a compact mathematical model, and Legato et al. (2012) pro-
posed a solution method based on Timed Petri Net model. In Legato and Trunfio
(2013), QCs were only restricted to unidirectional schedules. The problem was
solved using a branch-and-bound algorithm. Unsal and Oguz (2013) addressed
the problem with time windows and bidirectional schedules and solve it with
a constraint programming model. Wu and Ma (2017) extended the QCSP by
including draft and trim constraints to ensure the safety of ship hull during
the handling operations. The proposed problem was solved with a branch-and-
bound algorithm and a hybrid genetic algorithm. In a recent study, Chen and
Bierlaire (2017) examined the unidirectional QCSP problem and developed dif-
ferent versions of a makespan-constrained model to consider the vessel instability
and solution robustness.

Some other articles addressed different variants of the QCSP. Lee et al.
(2008a) were interested in the QCSP with handling priority of tasks that are
defined as bays that have different priorities. The assignment of QCs has to
ensure non-crossing and safety margin constraints. The authors formulated the
problem using a mixed-inteer programming (MIP) and proposed a genetic al-
gorithm to solve it. In Zhang et al. (2008), the on-line bay QCSP was studied
where the objective was to minimize the makespan subject to non-crossing con-
straints. The authors proposed approximate algorithms for both the over-list

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

version, in which each task is assigned to QC in the one-by-one mode without
considering the remaining tasks; and the over-time version, in which the tasks
are assumed to arrive over time. Some other works addressed the bay QCSP
with only non-crossing constraints (e.g. Wang and Kim (2009), Lee and Chen
(2010) and Liu et al. (2014)). Recently, Zhang et al. (2017) developed approx-
imate algorithms for multi QCs with a uniform work rate, and two QCs with
different work rates. In Hakam et al. (2012), the safety margin was included
and the problem was solved using a genetic algorithm. Conversely, Wang et al.
(2012) included the traveling time of QCs and proposed a Particle Swarm Op-
timization. Lee et al. (2011) developed a solution method for the bay QCSP in
which the QCs are placed in an indented berth and subject to non-crossing and
safety constraints. Lu et al. (2012) included the concept of contiguous bay oper-
ations, known as area bay problem, and developed a polynomial time heuristic.
Wang et al. (2013) took into consideration the vessel stability while building a
solution for the bay QCSP.

A new stream of research in the literature that defines a task as a single con-
tainer has recently emerged. Here, the granularity of one operation is smaller
compared to the container group. This allows assigning containers in the same
bay to more than one QC, which should result in more balanced workload and
less idle time of QCs. Choo et al. (2010) tackled the single ship QCSP, where
the QCs were subject to safety and non-crossing constraints, and the travel-
ing time of QCs between bays was assumed negligible. The authors developed
a compact mathematical formulation and a simple construction heuristic. In
addition, they proposed a column generation algorithm in which the master
problem is formulated as a QC-to-bay assignment and the pricing problem is
modeled as a shortest path problem. The column generation was integrated into
a branch-and-price algorithm that has provided exact solutions for large scale
problems in a short CPU time. At the second stage, the authors addressed the
multi-ship case that considers the yard storage congestion and solved it by a La-
grangian relaxation technique that decomposes the problem into single ship sub-
problems and relaxes the yard congestion constraints. Al-Dhaheri et al. (2016a)
considered the vessel stability constraints during loading/unloading containers
on/off the vessel, along with nonzero traveling time of QCs between bays. The
authors proposed an MIP formulation that also integrates safety margin and
non-crossing constraints. For medium and large scale problems, a genetic algo-
rithm was proposed in which chromosomes were represented using QC-to-bay
assignments. The fitness evaluation of the chromosome was performed by a
graph transformation that builds unidirectional schedules only. Al-Dhaheri and
Diabat (2015) addressed the problem of the QCSP with bidirectional movement
and separate work rate for the QCs; however, their work neglected the safety
margin constraints and the traveling time between bays. They proposed an MIP
model to minimize the unbalanced workload between all bays over time. Al-
Dhaheri and Diabat (2017) presented an MIP formulation for the QCSP subject
to safety margin and non-crossing constraints with the objective of minimizing
the makespan. The proposed formulation is based on an active bay per time seg-
ment representation, which allows for solving large problems using a standard

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

commercial solver. However, the performance of the model deteriorates when
the ship stability constraints are considered, and thus a heuristic was developed.
Moreover, the authors addressed the multi-ship problem and solved it using a
Lagrangian relaxation-based method.

As discussed above, most works in the literature proposed near-optimal so-
lutions. Few papers developed exact approaches to solve this problem, e.g. a
branch-and-cut presented in Moccia et al. (2005), a branch-and price proposed
by Choo et al. (2010) and a constraint programming model of Unsal and Oguz
(2013). Generally, MIP models are proposed to provide a mathematical formula-
tion of the addressed problem and solve small (or medium) problems. Typically,
such models are based on assignment decision variables. For example, the mod-
els for complete bays QCSP are based on binary variables to assign QCs to bays,
e.g Lee and Chen (2010). For the case of group container QCSP, the decision
variables are defined to take one if a QC is assigned to a group of containers
and, in addition, another index is added to establish the precedence relation
between two groups of containers, e.g. Kim and Park (2004) and Bierwirth and
Meisel (2009). Finally in the case of single container QCSP, the MIP models
use decision variables based on QC-to-bay assignment over time to locate the
position of each QC at each segment of the planning horizon, e.g. Choo et al.
(2010), Al-Dhaheri and Diabat (2015), and Al-Dhaheri et al. (2016b).

The present study follows the latter stream, in which a task is defined for
a single container considering non-crossing, safety margin, traveling time, and
initial position for QC. The objective is to find the QCs’ schedules that minimize
the completion time of all vessel operations. Unlike similar works in the litera-
ture where the problem is formulated using QC-to-bay assignment, we propose
a new mathematical model based on a graph-representation of the problem.
Moreover, we use the developed model to derive another exact method that has
the advantage of requiring shorter CPU time.

3. Problem characteristics

The start of the planning horizon for a vessel is when it is berthed. It is then
divided into B contiguous segments (bays), each of which contains a stack of
containers. Bays are indexed in ascending order from left (bow of the vessel) to
right (stern of the vessel) according to their relative position on the vessel. The
workload specifies the tasks for each bay defined by the number of containers
to be loaded/unloaded. There are K QCs assigned to a vessel and are ready
to operate at the beginning of the time horizon. The QCs are assumed to be
identical, meaning that the required time to load or unload one container is the
same for all QCs. Therefore, the planning horizon can be discretized into units
where a unit corresponds to the time required to handle one container, including
the time to load/unload the container onto/ from other resources, such as yard
trucks. The QCs are indexed in the same order and direction as the bay index,
and they move on a rail track from the left (bow) to the right (stern) of the
vessel without allowing QCs to cross each other. In other words, the ordered

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

index of QCs has to be kept during the whole time horizon. In addition, for
safety reasons, two adjacent QCs are not allowed to work on two adjacent bays
at the same time, meaning that a safety margin (clearance) distance has always
to be ensured during the planning horizon. This clearance can be measured by
the number of bays, r, that must separate two adjacent QCs. Each QC has an
initial known position and can work only on one bay at a given time. To move
from one bay to an adjacent bay, a QC requires one unit of time. Therefore,
the total traveling time between bays b1 and b2 is |b2 − b1| and the objective is
to minimize the total time necessary to complete processing all containers, or
what is known as the makespan. Lee et al. (2008b) showed that the restricted
version of the QCSP with non-crossing constraint is NP-complete, which means
the more general problem addressed in this paper is also NP-complete.

It should be noticed that safety margin constraints along with non-crossing
constraints restrict the assignment of QCs to bays. Indeed, QC k can only reach
bay b if (1) b ≥ (k − 1)(r + 1) + 1 and (2) b ≤ B − (K − k)(r + 1). Therefore,
the set Bk of bays reachable by QC k can be defined as follows

Bk = {b : b ∈ B, (k − 1)(r + 1) + 1 ≤ b ≤ B − (K − k)(r + 1)}. (1)

Consequently, a bay can be processed by at least one QC when B ≥ K(r + 1);
otherwise the problem becomes infeasible.

In our work, we consider both bidirectional and unidirectional schedules
for the QCSP. Even though the bidirectional schedules of QCs are the most
intuitive, allowing each QC to go from one bay to another regardless of the
movement of the other QCs, some ports prefer to limit the movement of QCs to
a unidirectional mode (Legato et al. (2012)). For the latter mode, QCs assigned
to the same vessel and repositioned from their initial position follow the same
direction from either bow to stern or stern to bow during the whole time horizon.
Clearly, restricting the movement to unidirectional movement only reduces the
search space and solutions can be obtained in less computational time than
with the bidirectional movement, most probably at the expense of the solution
quality. Bierwirth and Meisel (2009) highlighted that the optimal makespan of
unidirectional schedules is greater or equal to that of bidirectional schedules.

The different input parameters and sets defined for the problem are summa-
rized in Table 1.

Example 1: Table 2 gives the workload for a vessel with 10 bays. Each
column indicates the bay and the number of containers to load or unload. We
assume that 3 QCs are ready to operate at the beginning of the planning time
horizon. The initial positions of QC1, QC2, and QC3 are 1, 7, and 10, respec-
tively. The safety margin for two adjacent QCs is set to one bay, i.e. r = 1. All
QCs are identical and have the same work rate of one container per one time
unit. The traveling time of QC between two adjacent bays is equal to one time
unit.

Figure 1 presents the optimal solution for Example 1. The work of each QC
is represented with a different color, whereas the movement of QC between bays
is represented by arrows. As illustrated, the movement of QCs is bidirectional

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Parameters and sets of the QCSP.

K total number of QCs assigned to vessel,
K set of QCs, indexed by k,
B total number of bays,
B set of bays, indexed by b,
Bk set of bays reachable by QC k,
T length of the planning horizon,
T set of the discretized planning horizon, indexed by t,

T = {1, . . . , T},
wb workload on bay b in terms of number of containers

to be handled,
r clearance distance between two adjacent QCs

in terms of number of bays, r ≥ 1,
Ik initial bay position of QC k.

Table 2: Workload profile for Example 1.

Bay 1 2 3 4 5 6 7 8 9 10
Workload 10 6 0 4 2 1 10 4 1 1

and the corresponding optimal makespan is Cmax = 17.
In Figure 2, we illustrate the optimal solution for the same example when

the QCs are restricted to unidirectional schedules from right-to-left, for which
the optimal solution is Cmax = 18. When left-to-right movement is considered,
the best Cmax is equal to 19. This example shows that the bidirectional sched-
ules dominate unidirectional ones. However, the latter configuration has the
advantage of reducing the search space while generating high-solution quality.

4. Exact methods for the QCSP

In this section, we present two exact methods that are based on a graph
representation of the problem. In Section 4.1, we give the different steps to
construct the corresponding graph. In Sections 4.2 and 4.3, we present a math-
ematical model and an exact approach for the problem based on a binary search
algorithm, respectively. In Section 4.4, we describe a construction heuristic that
is used to reduce the graph size and improve the performance of the exact meth-
ods.

4.1. Graph representation
The QCSP can be represented by a directed graph G = (N,A), where N and

A are the set of nodes and arcs, respectively. The schedule of a QC is obtained
through the flow of arcs from the source node s to the sink node u. Each QC k,
k ∈ K, is represented by a node sk having only one incoming arc from the source

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

time

bays

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

QC1 QC2 QC3

Figure 1: Optimal solution of Example 1 for bidirectional movement.

node s. The workload on a bay b at time t is represented by a node j = 〈b, t〉,
where b ∈ B and t ∈ T . Therefore, the total number of workload nodes is equal
to the number of bays times the length of the planning horizon, B × T . We
denote by NQC the subset of nodes that represents QCs and NB the subset of
nodes that represents the workload. Therefore, N = {s} ∪NQC ∪NB ∪ {u}.

The set of arcs A represents the possible movement of QCs according to a
bidirectional QC operation and the result of the selected arcs defines the sched-
ule of all QCs. As mentioned above, a schedule of QC k is a path starting from
the arc (s, sk) and ending at the sink node u. The visited nodes represent the
occupied bays by QC k throughout the time horizon. We now give a description
of how the set, A, is built:

• An arc (s, sk) ∈ A represents a link between the source node s and a QC
node sk ∈ NQC .

• An arc (sk, j) ∈ A links the QC node sk ∈ NQC to the workload node
j = 〈b, t〉 ∈ NB to represent the first possible operation on b of QC k.
Hence, (sk, j) ∈ A iff t = |b− Ik|+ 1 and b ∈ Bk.

• An arc (j, j′) ∈ A links two workload nodes j = 〈b, t〉 ∈ NB and j′ =
〈b′, t + 1〉 ∈ NB , where 1 < b < B and 1 ≤ t < T . It represents the
potentially occupied bay b′ at time period t + 1. Thus, there are three
scenarios for b′: (i) b′ = b, the same bay is occupied during t and t + 1,

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

time

bays

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

QC1 QC2 QC3

Figure 2: Optimal solution of Example 1 for unidirectional movement.

meaning that a container of b is being handled at t + 1; (ii) b′ = b + 1,
which models a QC movement from b to the adjacent bay on the right-
hand side during t and t+ 1; and (iii) b′ = b− 1, which represents a QC
movement from b to the adjacent bay on the left-hand side during t and
t+ 1.
The first bay has one adjacent bay only. Therefore, for j1 = 〈1, t〉 ∈ NB ,
there are exactly two arcs (j1, j

′
1), (j1, j

′′
1) ∈ A that satisfy the aforemen-

tioned condition, where j′1 = 〈2, t+ 1〉 and j′′1 = 〈1, t+ 1〉.
Similarly, the last bay has only one adjacent bay. Thus, for jB = 〈B, t〉 ∈
NB , the arcs (jB , j′B) and (jB , j′′B) belong to A, where j′B = 〈B, t+ 1〉 and
j′′B = 〈B − 1, t+ 1〉.

• An arc (j, u) ∈ A represents a link between a workload node j = 〈b, T 〉 ∈
NB of the last time period T and the sink node u.

A unidirectional schedule can be derived from the graph G to obtain a re-
duced graph G′. The resulted graph contains only arcs that represent a uni-
directional operating mode. For a left-to-right unidirectional mode, the arcs
(i, j) ∈ A between any two nodes i = 〈b, t〉 ∈ NB and j = 〈b−1, t+ 1〉 ∈ NB are
removed from G. Similarly, the right-to-left unidirectional mode is obtained by
removing the arcs (i, j) ∈ A such that i = 〈b, t〉 ∈ NB and j = 〈b+1, t+1〉 ∈ NB .

For each arc (i, j) ∈ A, we associate a binary cost ci,j that is equal to 1 if

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(i, j) represents an effective operation of loading or unloading a container, and
0 otherwise. Formally, the weights of the arcs are computed as follows:

• ci,j = 1, if

◦ i = sk (sk ∈ NQC) which is the first operation to be performed by
QC k,

◦ i = 〈b, t〉 ∈ NB and j = 〈b, t+1〉 ∈ NB which establishes that the QC
stays at the same bay b and one QC operation can be accomplished,
1 ≤ t < T ,

• ci,j = 0, otherwise, which means that the corresponding QC is traveling
from node i to node j.

Example 2: To illustrate how the graph G is built, we use a small example
of QCSP with 2 QCs and 5 bays. The workload profile for each bay is as given in
Table 3. The initial position of QC1 and QC2 are 1 and 5, respectively. At any
time, a safety margin equivalent to one bay length has to be ensured between
two adjacent QCs. The planning horizon can be set to 8 (or any valid upper
bound). The resulting graph G of this example is shown in Figure 3 where only
non-zero arc weights are labeled. In this example, NQC = {s1, s2} and NB is
formed with all the nodes of G except {s, s1, s2, u}. Here, QC1 can only reach
Bays 1 to 3, i.e. B1 = {1, 2, 3}. The first operation of QC1 on a bay of B1 is
only possible at t = |b− I1|+ 1. Therefore, s1 has outgoing arcs to 〈1, 1〉, 〈2, 2〉,
and 〈3, 3〉. The arcs between the nodes of NB model the occupied bay at the
next time period. For example, the arc between 〈4, 2〉 and 〈4, 3〉 means that the
QC will stay at the same Bay 4 between periods 2 and 3 and one container can
be handled during this period, c〈4,2〉,〈4,3〉 = 1; whereas arcs between 〈4, 2〉 and
〈3, 3〉, and 〈4, 2〉 and 〈5, 3〉 represent the movement of the QC to Bays 3 and 5
at t = 3, respectively.

Table 3: Workload profile for Example 2.

Bay 1 2 3 4 5
Workload 3 1 2 4 2

In addition, we present in Figure 4 the reduced graph G′ when the QCs are
restricted to left-to-right movement.

Figure 5 represents an optimal solution for Example 2 with an optimal
makespan Cmax of 8. The optimal solution is obtained with two different paths
from nodes s to u. Each path corresponds to a schedule of a QC: the path start-
ing with arc (s, s1) represents the schedule of QC 1, whereas the path starting
with arc (s, s2) represents the schedule of QC 2. Below each visited node, the
current cumulative workload is reported. For example, the workload of node
〈1, 3〉 related to Bay 1 at t = 3 is 3 unloaded containers. At the next time
period t = 4, QC 1 is moved to the adjacent Bay 2, which is represented by

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

s u

s1

s2

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7 2, 8

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8

4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8

5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 5, 7 5, 8

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3: The obtained graph G of Example 2 for a bidirectional movement.

s u

s1

s2

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7 2, 8

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8

4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8

5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 5, 7 5, 8

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4: The obtained graph G′ of Example 2 for a left-to-right movement.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the arc going from node 〈1, 3〉 to 〈2, 4〉. The workload of the latter node is 0
because moving the QC from one bay to another bay requires one time unit and,
therefore, no work can be performed on Bay 2 during the time period t = 4.

It is of note that the planning horizon, T , in Example 2 is set equal to the
optimal makespan. However, T can be greater than the optimal makespan and,
consequently, the graph G will include additional nodes j = 〈b, t〉 ∈ NB , such
that Cmax < t ≤ T . This means that these nodes will be part of the optimal
schedule as they will be used for each path to reach the sink node u. In such
cases, the optimal makespan is obtained by finding the minimum value of t
(t ∈ T), for which the workload of all bays is satisfied.

s u

s1

s2

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7 2, 8

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8

4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8

5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 5, 7 5, 8

1

1

(1)
1

(2)
1

(1)
1

(3)

(2)
1

(0)
1

(3)
1

(1)

(4)

(0)
1

(0)
1

(1)
1

(1)
1

(2)

(2)

Figure 5: Optimal solution of Example 2

The graph representation can be generalized to consider other problem char-
acteristics as detailed in the following remarks.
Remark 1. Suppose that a QC k can operate after its earliest available time
(or ready time) ek. Arcs A of G are updated so that a QC node sk ∈ NQC
has an arc with a workload node j = 〈b, t〉 ∈ NB iff t = ek + |b− Ik| + 1. It is
noteworthy that in this case the set of reachable bays Bk should be redefined to
consider the number of available QCs over the planning horizon.
Remark 2. In case the initial position of a QC is outside the boundaries of the
vessel, i.e. Ik < 1 or Ik > K, the condition related to creating arcs linking QC
nodes to workload nodes, as stated in the second bullet of building the set A in
Section 4.1, remains valid.
Remark 3. We can generalize graph G to address the case where the QC trav-
eling time is not equal to one time unit. Let t̄ denote the traveling time of a
QC to move between two adjacent bays. According to the value of t̄, two cases
can be identified. The first case is when t̄ is an integer value such that t̄ ≥ 2;
i.e. the time required to move a QC between two bays is greater than handling
one container, then, G is updated as follows. Any arc of A linking a QC node
to a workload node j = 〈b, t〉 ∈ NB has to ensure that t = |b− Ik| t̄ + 1. In
addition, a QC movement between two adjacent bays is represented with an arc

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

that links two workload nodes j = 〈b, t〉 ∈ NB and j′ = 〈b′, t′〉 ∈ NB such that
|b− b′| = 1 and |t− t′| = t̄. The second case is related to QC traveling time
less than handling one container, i.e. t̄ < 1. Here, we assume that t̄ can be
written as t̄ = 1/ω, where ω is a positive integer. To solve this problem, we can
use the same graph structure presented above and update only the non-null arc
weights ci,j to be equal to ω. In addition, the load profile wb of each bay b ∈ B
is multiplied by ω. After solving this graph (as explained in Section 4.2), the
obtained value is divided by ω to derive the makespan.

4.2. Mathematical formulation
The mixed integer programming (MIP) model requires the definition of the

following parameters and decision variables:
Parameters:

δ−j : subset of A that contains incoming arcs to node j ∈ N ,

δ+
j : subset of A that contains outgoing arcs from node j ∈ N ,

αj : a function that returns the bay number of the node j, i.e. for j = 〈b, t〉 ∈
NB , αj = b.

β(b): subset of workload nodes of NB related to bay b. Hence,
β(b) = {j = 〈b, t〉 ∈ NB},

Ab: subset of arcs in A that involve all incoming arcs of nodes that represent
the bay b. Hence, Ab = {(i, j) ∈ A : j ∈ β(b)}.

Âb: subset of arcs in Ab that represent possible effective operations on the bay
b. This means that the arcs that represent movement from adjacent bays
to b are excluded from this subset. That is, if the arc (i, j) ∈ Ab and
ci,j = 1, then (i, j) ∈ Âb.

Ajs: subset of arcs in A used to represent the safety margin constraint. Given
node j = 〈b, t〉 ∈ NB , this subset includes all incoming arcs of nodes that
(i) are positioned from 1 to r bays away from the right-hand side of bay
b, and (ii) share the same time period t as j. Thus,

Ajs = {(i, k) ∈ A : j = 〈b, t〉, k = 〈b′, t〉, b′ ∈ [b+ 1,min(b+ r,B)]} .

Defining this set will help write safety margin constraints; when bay b of
node j = 〈b, t〉 is selected, there should be no incoming arcs for nodes
(bays) that must be clear on the right-hand side of b; thus, no arcs of
Ajs will be selected. Hence, defining another set to guarantee the safety
margin at the left-hand side of a node becomes redundant because if no r
bays away are selected on the right-hand side of the current selected bay,
it means that the adjacent selected bay has at least r free bays away on
the left-hand side.

For the example in Figure 3, we have:

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• β(3) = {〈3, 3〉, 〈3, 4〉, 〈3, 5〉, 〈3, 6〉, 〈3, 7〉, 〈3, 8〉}.

• Â3 =
{(
s1, 〈3, 3〉

)
,
(
s2, 〈3, 3〉

)
,
(
〈3, 3〉, 〈3, 4〉

)
,
(
〈3, 4〉, 〈3, 5〉

)
,
(
〈3, 5〉, 〈3, 6〉

)
,(

〈3, 6〉, 〈3, 7〉
)
,
(
〈3, 7〉, 〈3, 8〉

}
,

• A(3,5)
s =

{(
〈3, 4〉, 〈4, 5〉

)
,
(
〈4, 4〉, 〈4, 5〉

)
,
(
〈5, 4〉, 〈4, 5〉

)}
.

Decision variables:

xi,j : a binary variable that takes value 1 if arc (i, j) ∈ A is selected, and 0
otherwise,

λt: a flag variable that takes value 0 if the workload has not been completed
for all bays at time t, and 1 otherwise, t ∈ T ,

Wj : a positive integer variable defined on workload nodes that counts the num-
ber of operated containers for bay b at time period t, j = 〈b, t〉 ∈ NB .
W -variables are also defined on QC nodes, where Wsc

= 0, sc ∈ NQC .

The mathematical model F1 will be

F1 : maximize
∑

t∈T
λt (2)

subject to:

xs,j = 1, ∀j ∈ NQC , (3)
∑

(i,j)∈δ−
j

xi,j =
∑

(j,k)∈δ+
j

xj,k, ∀j ∈ NQC ∪NB , (4)

∑

(i,j)∈δ−
j

xi,j ≤ 1−
∑

(a,b)∈Aj
s

xa,b, ∀j ∈ NB , (5)

∑

(sk,j)∈δ+
sk

αjxsk,j ≤
∑

(sk+1,j)∈δ+
sk+1

αjxsk+1,j , k ∈ {1, . . . ,K − 1}, (6)

∑

(i,j)∈Ab

ci,jxi,j ≥ wb, b ∈ B, (7)

Wj = 0, ∀j ∈ NQC , (8)

Wj ≤
∑

(i,j)∈Âb

(Wi + ci,jxi,j), ∀j = 〈b, t〉 ∈ NB , (9)

λt ≤
Wj

wb
, ∀t ∈ T, j = 〈b, t〉 ∈ NB , (10)

x, λ binary, (11)
W nonnegative integer. (12)

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Constraints (3) enforce all QCs to operate on the vessel. Constraints (4)
guarantee the flow conservation: the QC nodes, NQC , have an incoming arc
from (3) that will be propagated to the bay nodes; this propagation is continued
until it is stopped by the sink node u and a complete arc-flow that represents
the schedule of a QC is obtained. The safety margin between two adjacent
QCs is ensured by Constraints (5) where at a given time t within the planning
horizon, a selected bay node (i.e. xi,j = 1) restricts the r bay nodes on the
right to be selected (i.e. all x-variables related to the incoming arcs of these
adjacent r bay nodes must be equal to 0). Constraints (6) represent the non-
crossing restriction for the outgoing arcs from the QC nodes. These constraints
together with (4) and (5) will guarantee the non-crossing restriction for all
selected nodes. Constraints (7) ensure that the obtained schedule satisfies the
required workload for all bays. According to (8), the W -variables are set equal
to 0. The computation of the achieved cumulative workload is performed by (9).
Typically, the sum of the right-hand-side of (9) involves one arc only, which is
the one representing an occupied bay during two consecutive periods of time,
or an arc linking a QC node to a workload node. In some cases, it is possible
to have more than one arc involved in this sum. Indeed, such arcs represent a
movement of QCs from their initial positions and an arrival to a workload node
at the same period of time; e.g. arcs (s1, 〈3, 3〉) and (s2, 〈3, 3〉) of Example 2.
Constraints (10) guarantee that the workload flag variable λ will be equal to
0 when the right-hand side is strictly less than 1. The objective function (2)
enforces λ to be 1 when the work on all bays is completed (the right-hand side
of (10) is greater or equal to 1), and thus the makespan is evaluated. That is, if
we let z? be the optimal value of F1, the optimal makespan is Cmax = T−z?+1.
Finally, the types of all variables are defined in (11) and (12).

It is worth mentioning that W -variables can be replaced with x-variables
to derive a new model having fewer variables and constraints. However, we
experimented with such a formulation and concluded that in general the current
form of F1 performs better.

The computational time of the model F1 can be enhanced by adding valid
cuts. Given a valid lower bound LB, (13) states that the last operation on the
vessel could not be before t = LB − 1 and, therefore, λ is set to 0 during this
period.

λt = 0, t ∈ {1, . . . , LB − 1}. (13)

For the unidirectional schedule mode, QCs are restricted to move in one
direction from left-to-right or right-to-left. Thus, once a QC moves from one
bay to an adjacent bay, it cannot be reassigned to the former bay. Suppose for
example, we have 3 QCs assigned to Bays 2, 4, and 7 at time t, respectively.
The total number of QCs from bays 1 to 7 is 3. When the movement of QCs
is limited to left-to-right, at t+ 1, it is possible to have (i) the same number of
QCs on the same range of bays (i.e. from 1 to 7), which means that QC3 is still
assigned to Bay 7, or (ii) the total number of QCs from bays 1 to 7 is reduced to

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2, which implies that QC3 is moved to Bay 8. This observation can be expressed
as valid cuts that can be added in order to speed up the computational time
required to find unidirectional schedules. Let t0 = maxk∈K Ik and Ãtb be the
set of incoming arcs of a workload node that represents a bay b at time t,
Ãtb = {(i, j) ∈ A : j = 〈b, t〉 ∈ NB}. (14) is a valid cut for the left-to-right mode
and (15) is a valid cut for the right-to-left mode.

b∑

b′=1
xi,j∈Ãt

b′
≥

b∑

b′=1
xi,j∈Ãt+1

b′
, t ∈ {t0, . . . , T − 1}, b ∈ B, (14)

b∑

b′=1
xi,j∈Ãt

b′
≤

b∑

b′=1
xi,j∈Ãt+1

b′
, t ∈ {t0, . . . , T − 1}, b ∈ B. (15)

4.3. Binary search-based optimal algorithm
The parameter T has a great impact on the size of the graph G and conse-

quently on the performance of the model F1. When T is set to a large upper
bound, solving F1 would take more time than with a tight value of T . Con-
versely, if T is assigned to a lower bound of the optimal solution, F1 becomes
infeasible. Given this observation, finding the optimal makespan is equivalent
to finding the smallest size of G constructed with T ? for which F1 is feasible.
Indeed, for a graph G obtained with a value less or equal to (T ?− 1), the prob-
lem becomes infeasible. Therefore, we can adapt the well-known Binary Search
Algorithm (BSA) to solve the problem under consideration. The objective is
to reduce the number of checking (iterations) the feasibility of F1 for different
values of T . Initially, the binary search starts by computing lower and upper
bounds. Then, T is set to the middle value of the interval delimited by the com-
puted lower and upper bounds. If the problem is feasible, the search continues
in the left half of the interval; otherwise, the search continues in the right half
of the interval. The binary search stops when the interval becomes empty and
the last value for which the problem is feasible is returned as the optimal value.

The main step of the binary search is to check the feasibility of F1 to solve
G with a size T . Therefore, only constraints related to flow conservations,
non-crossing, and workload are mandatory, whereas the objective function and
the remaining constraints of F1 are not necessary. The obtained mathematical
model F2 is as follows.

F2 : find(x) (16)
subject to:

(3), (4), (5), (6), (7)
x binary (17)

The advantage of the binary search is to reduce the number of iterations
to O(logn) and the quality of bounds used as starting points can reduce the

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

computational time. In this regard, we used the lower bound described in Al-
Dhaheri et al. (2016a), which is adapted from the work of Guan et al. (2013). To
obtain an upper bound, we developed a construction heuristic for the problem
that will be discussed in Section 4.4.

The iterative procedure of BSA is described in Algorithm 1.

Algorithm 1 Binary search-based algorithm (BSA)
1: Compute a lower bound LB
2: Compute an upper bound UB
3: UB? ← UB
4: while LB ≤ UB do
5: T ← bLB+UB

2 c
6: Construct the graph G with T and solve F2
7: if the problem is feasible then
8: UB? ← T
9: UB ← T − 1
10: else
11: LB ← T + 1
12: end if
13: end while
14: return UB?

4.4. Construction heuristic
In this section, we propose a polynomial time heuristic for the problem to

compute a valid upper bound that can be set as the parameter T of the graph
G. A good upper bound reduces the graph size, which means that the proposed
formulation can be solved in a shorter time than a graph created with a higher
value of T . Furthermore, the schedules obtained by this heuristic can be used
as a starting solution to enhance the performance of the solver.

The construction heuristic is presented in Algorithm 2 and the rationale is
to distribute the total workload between the QCs equitably (Steps 1 to 15).
This distribution considers the assignment restriction since not all bays can be
reached by all QCs, and also ensures that fractional workload is shared among
QCs. For example, suppose we have a total workload L = 58 to share among
4 QCs, Steps 4 and 5 ensure that the QC-workload for QC 1, 2, 3 and 4 are
l1 = 15, l2 = 14, l3 = 15 and l4 = 14, respectively. In the next stage, the
construction heuristic assigns bays to QCs using a unidirectional movement (by
default it is set to left-to-right). The QCs are first moved from their initial
positions to the initial working bay (computed in Step 17). Then, they start
working on bays according to the partial assigned work until all jobs in all bays
are performed (Steps 18 to 38) and the algorithm terminates with UB as an
upper bound.

This algorithm can easily be adopted to the right-to-left movement.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 Pseudocode of the Construction Heuristic
1: . Compute the total workload L
2: L ←∑

b∈B w(b)
3: . Compute the QC-workload lk for each QC k
4: l1 ← round(L/K)
5: lk ← round(L ∗ k/K)−∑k−1

i=1 li, for all k = 2, . . . ,K
6: . Compute the partial QC-workload wk,b of the QC k on bay b
7: for all k ∈ K, b ∈ Bk do
8: if there is still workload on b (wb > 0) then
9: wk,b ← min(wb, lk)
10: set lk ← lk − wk,n and wb ← wb − wk,n
11: if QC-workload of k is achieved (lk = 0) then
12: the assignment of k is terminated and go to next QC
13: end if
14: end if
15: end for
16: . Compute the initial working bay of each QC
17: sk ← arg minb(wk,b 6= 0), for all k ∈ K
18: . Create the schedule for QCs
19: UB ← 0
20: while there is remaining work do
21: UB ← UB + 1
22: for all k ∈ K do
23: if k is moving from Ik to sk then
24: move k to the adjacent bay
25: else
26: let b the current bay-position of k
27: if wk,b ≥ 0 then
28: Subtract one work unit from wk,b
29: else
30: if the safety margin allows for it then
31: move k to the adjacent bay
32: else
33: keep k waiting in its current bay-position
34: end if
35: end if
36: end if
37: end for
38: end while
39: return UB

5. Computational study

The aim in this section is to assess the performance of the proposed methods
for different problem sizes. The different algorithms were implemented in C++

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

language using Microsoft Visual Studio C++ 2012. The Concert Technology
API for C++ is used to implement and solve the mathematical models with the
commercial solver IBM ILOG CPLEX 12.6. All tests were carried out on a PC
running Windows 7 with an Intel i7 3.1 GHz processor and 8 GB of RAM.

The experiments are based on the problem instances of Al-Dhaheri et al.
(2016a) that include small-, medium-, and large-sized instances. The small-sized
instance set has thirty instances in which the number of QCs ranges between
2 and 5, and the number of bays ranges between 8 and 12. The workload on
each bay is between 0 and 20. The medium-sized instances have 15 bays that
are shared by 2 or 4 QCs. For each QC size, there are 5 different instances with
a workload between 0 and 100 work units on each bay. Finally, the large-sized
instance set includes 20 instances with 3 or 6 QCs, and 20 or 25 bays, each of
which has a workload between 0 and 100. For all instances, the traveling time
of QCs between two adjacent bays and the working rate of QCs are set to one
time unit. The clearance distance is equivalent to one bay (r = 1).

All the instances are used to test the performance of the developed methods
(model F1 and the BSA algorithm). Since these methods depend on bound
values, the heuristic presented in Section 4.4 as an upper bound and the lower
bound of Guan et al. (2013) are used as follows. For F1, the upper bound
UB provided by the heuristic is used to set T (the size of the graph G) and
is also used as an initial solution for CPLEX. The lower bound LB is used for
the valid cuts (13). When the solution is restricted to unidirectional schedules,
either (14) or (15) is added to F1 depending on which direction is allowed, left-
to-right or right-to-left, respectively. For BSA, LB and UB are used according
to the description of Algorithm 1. Moreover, preliminary experiments showed
that running F1 and BSA using the following parameters enhanced the speed
of CPLEX in finding the optimal solution: RootAlg (MIP starting algorithm)
is set to Network; and HeurFreq (MIP heuristic frequency) is set to 20.

The proposed methods are compared to AJD – the mathematical model
of Al-Dhaheri et al. (2016a). In order to make a consistent comparison, we
removed the stability constraints of AJD and set the planning horizon parameter
T of AJD to UB. For all tested methods, the CPU time limit is set to 10 hours
(36,000 s). When a method is able to prove the optimality of a solution, its
corresponding value is highlighted in bold in the tables of results.

The first experiment aims to test the ability of model F1 and the algorithm
BSA to solve small- and medium-sized instances for a bidirectional mode. The
results are reported in Table 4 where the characteristics and the obtained LB
and UB values for each instance are detailed. Since the heuristic produces a
unidirectional schedule, the column (DIR) specifies the direction for the ob-
tained solution whether it is left-to-right (LTR) schedule or right-to-left(RTL)
schedule. The CPU time to obtain LB and UB are not reported because the
algorithms that generate these bounds run in a polynomial time and, for all
instances, the results are obtained in a negligible CPU time (less than 0.01 s).
The column (GAP) of Table 4 gives the gap (in percentage (%)) of the obtained
UB to the optimal solution or the best-known solution. This measure reveals
the high solution quality of the proposed heuristic. In fact, the average gap

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for small - and medium-sized instances is only 2.2%. The heuristic was able to
provide the optimal value for 13 out of 30 small-sized instances. In 7 out of the
13 instances, LB and UB were equal, which means that the optimal solution is
obtained without the use of any advanced exact method.

It can be seen from Table 4 that F1 and BSA were able to solve most small
instances in a few seconds and the best performance is obtained by BSA. In
fact, the average CPU time for BSA to solve small instances is 12.6 s; whereas
it is 35.9 s for F1. However, for medium-sized instances, F1 provides the best
results in terms of both number of solved instances and average CPU time.
F1 is able to solve 6 out of 10 instances compared to 4 out of 10 instances
for BSA. For the remaining instances where the optimality is not proven,
all developed methods generate high-quality solutions where the average gap
between the provided solution and the lower bound for the unsolved instances
is less than 0.6%. Furthermore, the experiment shows the superiority of the
developed methods over the model of Al-Dhaheri et al. (2016a).

The aim in the second experiment is to test the developed exact methods
for unidirectional schedules. Table 5 reports the results of this experiment for
small- and medium-sized instances. The column OPT_DIR refers to the di-
rection for which the best solution is obtained for each instance. Cases in which
both directions yield the same optimal result are indicated by LTR-RTL. The
results reveal the clear dominance of the proposed exact methods compared to
AJD where all methods were able to solve all small-sized instances in less than
1 s; whereas AJD model always required more CPU time. Also, the AJD model
could not provide any feasible solution for the medium-sized instances within
the time limit, while F1 and BSA solved all these instances in few seconds.
Overall, the best performance is shown by BSA, requiring less CPU time for
medium-sized instances than F1. For example, the average CPU time of BSA
to solve the instances with 15 bays and 4 QCs is 40% of the average CPU time
of F1. Furthermore, the obtained results show the impact of the graph size G
on the general performance of F1 and BSA, where in these methods, the CPU
time required to solve unidirectional schedules is considerably lower than that
required to solve the bidirectional schedules of the same instances (see Tables 4
and 5). Since, for a given instance, the graph G′ (for the unidirectional move-
ment) includes fewer arcs than the corresponding graph G (for the bidirectional
movement), the performance of F1 and BSA have been drastically improved.
Finally, from Tables 4 and 5, it can be observed that the optimal solution for
the unidirectional schedule is also optimal for the bidirectional schedule for
most instances. For 37 out of 40 instances where the optimal bidirectional so-
lution is known, only two instances (20 and 30) have an optimal unidirectional
value greater than the optimal bidirectional value. However, even for these two
instances, the difference between the optimal unidirectional and bidirectional
solutions is only 1 time unit, meaning that restricting the QCs to the unidirec-
tional movement has the advantage of reducing the complexity of the problem,
without compromising on quality.

In another experiment, we test the ability of the developed methods to solve
large-sized instances. It is noteworthy that most of the literature on QCSP

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ta
bl
e
4:

T
he

ob
ta
in
ed

re
su
lts

fo
r
bi
di
re
ct
io
na

ls
ch
ed
ul
es

fo
r
sm

al
l-a

nd
m
ed
iu
m
-s
iz
ed

in
st
an

ce
s.

#
.

K
B

∑
w

b
LB

U
B

A
JD

m
od

el
F

1
B
S
A

So
l.

D
IR

G
A

P
So

l.
C

P
U

So
l.

C
P

U
So

l.
C

P
U

1
2

8
63

36
36

LT
R

0.
00

36
-

36
-

36
-

2
61

34
35

LT
R

2.
94

34
32

.7
4

34
0.

44
34

0.
38

3
67

37
38

LT
R

2.
70

37
50

.8
3

37
0.

37
37

0.
57

4
92

50
50

LT
R

0.
00

50
-

50
-

50
-

5
10

1
55

55
LT

R
0.

00
55

-
55

-
55

-

av
g.

16
.7

1
av

g.
0.

16
av

g.
0.

19

6
3

8
63

23
26

R
T

L
0.

00
26

0.
59

26
0.

29
26

0.
65

7
61

23
31

R
T

L
0.

00
31

1.
11

31
0.

26
31

0.
75

8
67

33
33

LT
R

0.
00

33
-

33
-

33
-

9
92

33
34

LT
R

0.
00

33
7.

80
34

1.
00

34
1.

25
10

10
1

37
38

LT
R

2.
70

37
15

3.
61

37
0.

60
37

2.
70

av
g.

32
.6

2
av

g.
0.

43
av

g.
1.

07

11
3

10
93

34
35

LT
R

0.
00

35
36

,0
00

35
2.

15
35

7.
08

12
76

29
35

LT
R

3.
03

32
81

2.
97

32
2.

64
32

1.
07

13
83

33
34

LT
R

3.
03

33
8.

00
33

0.
43

33
0.

54
14

11
0

41
42

LT
R

2.
44

41
36

,0
00

41
7.

38
41

6.
54

15
12

4
45

47
LT

R
2.

17
47

36
,0

00
46

42
7.

51
46

11
7.

39

av
g.

21
,7

64
.1

9
av

g.
88

.0
2

av
g.

26
.5

3

16
4

10
93

26
31

R
T

L
0.

00
31

3.
10

31
0.

37
31

0.
66

17
76

22
32

R
T

L
6.

67
30

6.
33

30
0.

36
30

0.
78

18
83

33
33

LT
R

0.
00

33
-

33
-

33
-

19
11

0
32

37
R

T
L

5.
71

35
30

.6
4

35
1.

51
35

2.
03

20
12

4
34

37
LT

R
5.

71
35

45
0.

84
35

10
.5

6
35

3.
10

av
g.

98
.1

8
av

g.
2.

56
av

g.
1.

31

21
4

12
10

9
31

35
LT

R
9.

38
32

18
7.

44
32

5.
86

32
2.

72
22

90
26

33
LT

R
6.

45
31

88
2.

50
31

0.
44

31
1.

58
23

10
0

33
33

LT
R

0.
00

33
-

33
-

33
-

24
12

6
35

40
LT

R
11

.1
1

37
36

,0
00

36
48

5.
09

36
11

8.
86

25
16

0
43

45
LT

R
2.

27
45

36
,0

00
44

12
8.

86
44

10
5.

83

av
g.

14
,6

13
.9

9
av

g.
12

4.
05

av
g.

45
.8

0

26
5

12
10

9
25

31
LT

R
0.

00
31

5.
40

31
0.

24
31

0.
81

27
90

21
32

LT
R

6.
67

30
45

.0
8

30
0.

85
30

1.
07

28
10

0
33

33
LT

R
0.

00
33

-
33

-
33

-
29

12
6

32
37

LT
R

8.
82

34
17

1.
43

34
0.

87
34

0.
80

30
16

0
35

38
LT

R
2.

70
37

46
.9

7
37

0.
70

37
2.

34

av
g.

53
.7

8
av

g.
0.

53
av

g.
1.

01

31
2

15
71

9
36

7
36

8
LT

R
0.

27
**

36
7

27
9.

67
36

8
36

,0
00

32
79

5
40

6
40

7
LT

R
0.

25
**

40
6

3,
09

8.
13

40
7

36
,0

00
33

80
4

41
0

41
3

LT
R

0.
73

**
41

0
34

,5
14

.6
0

41
0

34
,2

92
.5

0
34

61
2

31
4

31
5

LT
R

0.
32

**
31

4
10

,4
14

.0
0

31
4

25
6.

36
35

71
5

36
5

36
6

LT
R

0.
27

**
36

5
1,

47
3.

15
36

5
26

3.
99

av
g.

**
av

g.
9,

95
5.

91
av

g.
21

,3
62

.5
7

36
4

15
71

9
18

4
18

6
R

T
L

0.
54

**
18

5
36

,0
00

18
5

36
,0

00
37

79
5

20
3

20
4

LT
R

0.
49

**
20

3
18

,4
53

.4
0

20
4

36
,0

00
38

80
4

20
5

20
7

R
T

L
0.

49
**

20
6

36
,0

00
20

6
4,

75
4.

02
39

61
2

15
7

15
8

LT
R

0.
00

**
15

8
36

,0
00

15
8

36
,0

00
40

71
5

18
3

18
4

LT
R

0.
00

**
18

4
36

,0
00

18
4

36
,0

00

av
g.

**
av

g.
32

,4
90

.6
8

av
g.

29
,7

50
.8

0
(-

)
O

pt
im

al
so

lu
ti

on
ob

ta
in

ed
in

a
ne

gl
ig

ib
le

ti
m

e
be

ca
us

e
L
B

=
U
B

.
(*

*)
N

o
fe

as
ib

le
so

lu
ti

on
w

it
hi

n
th

e
C

P
U

ti
m

e
lim

it
(3

6,
00

0
s)

.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: The obtained results for unidirectional schedules for small-and medium-sized in-
stances.

#. LB UB OPT_DIR AJD model F1 BSA
Sol. CPU Sol. CPU Sol. CPU

1 36 36 LTR 36 - 36 - 36 -
2 34 35 LTR 34 3.00 34 0.21 34 0.25
3 37 38 LTR 37 5.54 37 0.20 37 0.25
4 50 50 LTR 50 - 50 - 50 -
5 55 55 LTR 55 - 55 - 55 -

avg. 1.71 avg. 0.08 avg. 0.10

6 23 26 LTR-RTL 27 0.41 26 0.10 26 0.27
7 23 31 RTL 31 0.81 31 0.13 31 0.38
8 33 33 LTR 33 - 33 - 33 -
9 33 34 RTL 34 1.40 34 0.07 34 0.21
10 37 38 LTR 37 3.93 37 0.28 37 0.16

avg. 1.31 avg. 0.11 avg. 0.20

11 34 35 LTR 35 4.81 35 0.15 35 0.44
12 33 34 RTL 33 19.23 33 0.36 33 0.49
13 33 34 LTR 33 5.48 33 0.18 33 0.28
14 41 42 RTL 41 22.17 41 0.44 41 0.44
15 45 47 RTL 46 45.10 46 0.41 46 0.74

avg. 19.36 avg. 0.31 avg. 0.48

16 26 31 LTR-RTL 32 0.84 31 0.11 31 0.40
17 22 32 RTL 30 4.13 30 0.34 30 0.62
18 33 33 LTR 33 1.45 33 - 33 -
19 32 37 RTL 35 4.13 35 0.36 35 0.49
20 34 37 RTL 36 6.12 36 0.20 36 0.58

avg. 3.34 avg. 0.20 avg. 0.42

21 31 35 LTR-RTL 34 40.22 32 0.42 32 0.85
22 26 33 LTR 31 40.76 31 0.41 31 1.05
23 33 33 LTR 33 - 33 - 33 -
24 35 40 RTL 36 245.09 36 0.47 36 0.93
25 43 45 LTR 44 70.18 44 0.44 44 0.83

avg. 79.25 avg. 0.35 avg. 0.73

26 25 31 LTR 31 2.93 31 0.52 31 0.67
27 21 32 RTL 30 5.48 30 0.53 30 0.97
28 33 33 LTR 33 - 33 - 33 -
29 32 37 RTL 34 15.88 34 0.43 34 0.71
30 35 38 RTL 38 19.64 38 0.24 38 0.76

avg. 8.79 avg. 0.34 avg. 0.62

31 367 368 LTR ** 367 37.77 367 30.35
32 406 407 LTR ** 406 84.98 406 48.77
33 410 413 LTR ** 410 237.57 410 87.35
34 314 315 LTR ** 314 151.04 314 17.44
35 365 366 LTR ** 365 220.65 365 21.28

avg. ** avg. 146.40 avg. 41.04

36 184 186 LTR-RTL ** 185 39.66 185 15.02
37 203 204 LTR ** 203 71.24 203 11.38
38 205 207 LTR-RTL ** 206 30.87 206 23.45
39 157 158 LTR ** 158 18.47 158 10.31
40 183 184 LTR ** 184 27.84 184 15.12

avg. ** avg. 37.61 avg. 15.05
(-) Optimal solution obtained in a negligible time because LB = UB.
(**) No feasible solution within the CPU time limit (36,000 s).

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

with nonzero QC traveling time proposed only near-optimal solutions to solve
large instances due to the complexity of the problem. However, as it can be
seen in Table 6, the proposed methods are able to solve all large-sized instances,
in which the total number of containers range between 1028 and 1360. To
compare between the developed methods, the results show that BSA performs
better than F1 where the average CPU time on BSA is always the lowest
(except for instances 56 and 58). In addition, all instances have been solved by
BSA in an average CPU time of less than 30 minutes, whereas F1 was not able
to prove the optimality for instances 51 and 57. Furthermore, the results of
this experiment confirm the high solution quality of the heuristic method which
produced solutions with an average gap of only 1.32% to the optimal values,
while requiring a negligible CPU time (less than 0.01s).

Table 6: The obtained results for unidirectional schedules for large-sized instances.
#. K B

∑
wb LB UB OPT_DIR F1 BSA

Sol. Gap Sol. CPU Sol. CPU

41 3 20 959 327 328 0.31 LTR 327 388.47 327 84.76
42 1051 358 358 0.00 LTR 358 - 358 -
43 1051 358 359 0.28 LTR 358 660.66 358 121.81
44 892 305 306 0.33 LTR 305 366.52 305 85.07
45 967 330 330 0.00 LTR 330 - 330 -

avg. 283.13 avg. 58.33

46 6 20 959 164 167 1.21 LTR-RTL 165 93.98 165 34.12
47 1051 179 182 1.11 RTL 180 171.45 180 112.91
48 1051 179 182 1.11 LTR 180 96.44 180 45.14
49 892 153 189 8.62 RTL 174 116.87 174 48.46
50 967 165 170 1.80 LTR 167 283.03 167 72.41

avg. 152.35 avg. 62.61

51 3 25 1357 462 465 0.22 LTR 464 36,000 464 3,101.78
52 1360 462 470 1.08 LTR 465 6,523.88 465 1,415.00
53 1314 448 455 1.11 LTR 450 12,778.30 450 2,399.84
54 1028 351 360 1.69 RTL 354 16,246.50 354 579.81
55 1231 419 427 1.18 RTL 422 9,278.58 422 1,315.93

avg. 16,165.45 avg. 1,762.47

56 6 25 1357 231 233 0.87 LTR-RTL 231 258.22 231 868.15
57 1360 232 234 0.43 RTL 233 36,000 233 2,995.73
58 1314 225 229 1.78 LTR 225 614.75 225 1,714.46
59 1028 177 183 2.23 RTL 179 5,576.05 179 455.02
60 1231 210 213 0.95 RTL 211 5,189.32 211 413.04

avg. 9,527.67 avg. 1,289.28
(-) Optimal solution obtained in a negligible time because LB = UB.

In addition, we observe from Tables 4, 5, and 6 that the total number of
periods T , and the solution value, are related to the total number of containers
and the number of QCs. Since each bay size (b = 8, . . . , 25) is tested with
two different allocated numbers of QCs, we can deduce that increasing the QC
resources allows for a better repartition of the total workload and results in a
reduced makespan. Furthermore, the number of QCs impacts the complexity
of the problem. Indeed, F1 and BSA perform generally better with a higher
number of QCs.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

To push our analysis further, we conducted a computational experiment on
the instances provided by Meisel and Bierwirth (2011), which were proposed
as benchmark problems for the group container QCSP. Because in our case the
task is defined for a single container and neither precedence nor simultaneity
relations exist among tasks, we adapted the instance sets slightly to be consistent
with our problem characteristics. In particular, we considered the sum of the
processing times of group tasks belonging to the same bay-location to derive
the workload on each bay, wb. In group container QCSP, the safety margin
constraint is implicitly defined by preventing two tasks located in adjacent bays
to be operated simultaneously, which is in our case equivalent to setting the
safety margin to one bay, r = 1. For these benchmark instances, the QC
traveling time is similar to our problem characteristics. Meisel and Bierwirth
(2011) proposed different instance sets A–G that differ by problem parameters.
In our experiment, we only retained sets A, B, and C as they are more relevant
to our case. Indeed, sets A, B, and C have different number of bays (10, 15, and
20 bays, respectively) as well as the total number of containers to be handled
(1000, 3000, and 6000 containers, respectively), whereas sets D–G have only
15 bays and differ by number of QCs, safety margin distance, and frequency
of precedence or non-simultaneity relations between tasks. Each set of A, B,
and C has different number of group containers defined by parameter n, and
each combination within each set is composed of ten different instances. Due to
instance sizes, this experiment is carried out for bidirectional schedules for set
A and unidirectional schedules for sets B and C. For the latter sets, all obtained
schedules are related to left-to-right movement because the initial positions of
QCs, as defined in this benchmark instances, are placed on the left side of the
vessel starting from bay 1 and with accordance to safety margin. Table 7 reports
the obtained results of this experiment. Each row gives a summary of the ten
instances of each combination of n within each set. The column (UB − Gap)
indicates the average gap in percentage of the obtained UB to the optimal
solution or the best-known solution. The columns (#. solved) and (CPU)
refer to the number of solved instances within the CPU time limit and the
average CPU time in seconds. Note that since we have a total of 190 different
instances, we thus limited the time to 2 hours only (the obtained results of each
instance can be found in the Appendix section). Table 7 confirms the high-
quality solution generated by the construction heuristic where the average gap is
less than 1% in most cases and the maximum average gap is only 2.55% obtained
for set C and n = 80. Interestingly, the proposed exact methods are able to prove
the optimality for most instances with a dominance for BSA, which provides
optimal solutions for 174 out of 190 instances in an average of 1486 seconds,
whereas F1 solves 161 instances and requires on average 2251 seconds. Finally,
all experiments confirm that developing a graph-based approach significantly
increases the efficiency of the proposed exact method in finding optimal solutions
for the QCSP.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7: A summary of the obtained results for Meisel and Bierwirth (2011) instances.
Class n UB F1 BSA

(Gap) #. slvd CPU (avg) #. solved CPU (avg)

A 10 0.24 10 731.6 10 909.4
15 0.14 10 303.3 10 367.5
20 0.24 10 612.9 10 283.2
25 0.22 10 1201.7 8 1820.5
30 0.24 10 1124.4 10 595.9
35 0.24 10 989.0 9 1333.0
40 0.28 10 1410.4 9 1381.7

B 45 0.26 10 897.0 10 273.7
50 0.24 10 1021.7 10 355.3
55 0.23 10 1134.9 10 462.9
60 0.28 10 1066.2 10 387.0
65 0.20 10 1214.8 10 470.8
70 0.26 10 704.0 10 432.3

C 75 1.80 4 5309.2 7 3202.1
80 2.55 7 5159.3 9 2986.8
85 2.19 6 5179.9 7 3752.1
90 0.40 6 4238.3 7 3280.3
95 0.19 3 5623.6 10 2876.9
100 1.47 5 4854.6 8 3065.1

6. Conclusion

This paper addresses an important problem that arises at the quayside of
port terminals of finding optimal schedules for QCs to load and unload a berthed
vessel. The problem is subject to several practical constraints such as the initial
position, non-crossing, and safety margin of QCs as well as nonzero traveling
time. Following the most recent stream of research in the literature, the problem
defines a task to be performed by a QC as a single container. Contrary to group
container or bay QCSP, the granularity of the single container QCSP is finer
and offers better schedules by reducing the QC idle time; however, the problem
becomes more complex and hard to solve as the resulting schedules involve more
operations.

A graph-based transformation approach was used in introducing two exact
methods to optimally solve the problem. The first method is based on a mixed-
integer programming model that is enhanced by additional cuts while the second
is based on a binary search that exploits the graph structure to find optimal
solutions efficiently. The computational study showed that the two proposed
methods outperform the most recent model in the literature and were able to
solve large-sized instances in a reasonable CPU time and smaller instances very
efficiently. In addition, a heuristic algorithm was developed to provide an initial
solution for both methods. This heuristic has the advantage of being simple
to implement and offers near-optimal solutions within a negligible amount of
time. Furthermore, the experiments provide a proof-of-concept that restricting
the movement of QC to unidirectional schedules is a good option to find high
quality solutions for the QCSP.

The current work can be extended to consider container-dependent operation
time and/or different QC rates. Another extension could be integrating the

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

QCSP with the QCAP to address the Quay Crane Assignment and Scheduling
Problem (QCASP).

Acknowledgments

This research was made possible by NPRP Grant No. NPRP 7-796-2-297
from the Qatar National Research Fund (a member of The Qatar Foundation).
The statements made herein are solely the responsibility of the authors.

References

References

Agra, A. and Oliveira, M. (2018). MIP approaches for the integrated berth
allocation and quay crane assignment and scheduling problem. European
Journal of Operational Research, 264(1):138–148.

Al-Dhaheri, N. and Diabat, A. (2015). The quay crane scheduling problem.
Journal of Manufacturing Systems, 36:87–94.

Al-Dhaheri, N. and Diabat, A. (2017). A lagrangian relaxation-based heuristic
for the multi-ship quay crane scheduling problem with ship stability con-
straints. Annals of Operations Research, 248(1):1–24.

Al-Dhaheri, N., Jebali, A., and Diabat, A. (2016a). The quay crane scheduling
problem with nonzero crane repositioning time and vessel stability constraints.
Computers & Industrial Engineering, 94:230–244.

Al-Dhaheri, N., Jebali, A., and Diabat, A. (2016b). A simulation-based ge-
netic algorithm approach for the quay crane scheduling under uncertainty.
Simulation Modelling Practice and Theory, 66:122–138.

Bierwirth, C. and Meisel, F. (2009). A fast heuristic for quay crane scheduling
with interference constraints. Journal of Scheduling, 12(4):345–360.

Bierwirth, C. and Meisel, F. (2010). A survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational
Research, 202(3):615–627.

Bierwirth, C. and Meisel, F. (2015). A follow-up survey of berth allocation and
quay crane scheduling problems in container terminals. European Journal of
Operational Research, 244(3):675–689.

Chen, J. H. and Bierlaire, M. (2017). The study of the unidirectional quay
crane scheduling problem: complexity and risk-aversion. European Journal
of Operational Research, 260(2):613 – 624.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Chen, J. H., Lee, D.-H., and Cao, J. X. (2011). Heuristics for quay crane
scheduling at indented berth. Transportation Research Part E: Logistics and
Transportation Review, 47(6):1005–1020.

Chen, J. H., Lee, D.-H., and Goh, M. (2014). An effective mathematical for-
mulation for the unidirectional cluster-based quay crane scheduling problem.
European Journal of Operational Research, 232(1):198–208.

Choo, S., Klabjan, D., and Simchi-Levi, D. (2010). Multiship crane sequencing
with yard congestion constraints. Transportation Science, 44(1):98–115.

Chung, S. and Chan, F. T. (2013). A workload balancing genetic algorithm
for the quay crane scheduling problem. International Journal of Production
Research, 51(16):4820–4834.

Chung, S. and Choy, K. (2012). A modified genetic algorithm for quay crane
scheduling operations. Expert Systems with Applications, 39(4):4213–4221.

Diabat, A. and Theodorou, E. (2014). An integrated quay crane assignment
and scheduling problem. Computers & Industrial Engineering, 73:115–123.

Fu, Y.-M., Diabat, A., and Tsai, I.-T. (2014). A multi-vessel quay crane assign-
ment and scheduling problem: Formulation and heuristic solution approach.
Expert Systems with Applications, 41(15):6959–6965.

Guan, Y., Yang, K.-H., and Zhou, Z. (2013). The crane scheduling problem:
models and solution approaches. Annals of Operations Research, 203(1):119–
139.

Guo, P., Cheng, W., and Wang, Y. (2013). A modified generalized extremal op-
timization algorithm for the quay crane scheduling problem with interference
constraints. Engineering Optimization, 46(10):1411–1429.

Hakam, M. H., Solvang, W. D., and Hammervoll, T. (2012). A genetic algo-
rithm approach for quay crane scheduling with non-interference constraints
at narvik container terminal. International Journal of Logistics Research and
Applications, 15(4):269–281.

Izquierdo, C. E., Velarde, J. L. G., Batista, B. M., and Moreno-Vega, J. M.
(2011). Estimation of distribution algorithm for the quay crane scheduling
problem. In Nature Inspired Cooperative Strategies for Optimization (NICSO
2011), pages 183–194. Springer Science + Business Media.

Kaveshgar, N., Huynh, N., and Rahimian, S. K. (2012). An efficient genetic
algorithm for solving the quay crane scheduling problem. Expert Systems
with Applications, 39(18):13108–13117.

Kim, K. H. and Park, Y.-M. (2004). A crane scheduling method for port con-
tainer terminals. European Journal of Operational Research, 156(3):752–768.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Lee, D.-H. and Chen, J. H. (2010). An improved approach for quay crane
scheduling with non-crossing constraints. Engineering Optimization, 42(1):1–
15.

Lee, D.-H., Chen, J. H., and Cao, J. X. (2011). Quay crane scheduling for an
indented berth. Engineering Optimization, 43(9):985–998.

Lee, D.-H., Wang, H. Q., and Miao, L. (2008a). Quay crane scheduling with
handling priority in port container terminals. Engineering Optimization,
40(2):179–189.

Lee, D.-H., Wang, H. Q., and Miao, L. (2008b). Quay crane scheduling with non-
interference constraints in port container terminals. Transportation Research
Part E: Logistics and Transportation Review, 44(1):124 – 135.

Legato, P. and Trunfio, R. (2013). A local branching-based algorithm for the
quay crane scheduling problem under unidirectional schedules. 4OR-Q J Oper
Res, 12(2):123–156.

Legato, P., Trunfio, R., and Meisel, F. (2012). Modeling and solving rich quay
crane scheduling problems. Computers & Operations Research, 39(9):2063–
2078.

Liu, M., Zheng, F., and Li, J. (2014). Scheduling small number of quay cranes
with non-interference constraint. Optimization Letters, 9(2):403–412.

Lu, Z., Han, X., Xi, L., and Erera, A. L. (2012). A heuristic for the quay crane
scheduling problem based on contiguous bay crane operations. Computers &
Operations Research, 39(12):2915–2928.

Meisel, F. (2011). The quay crane scheduling problem with time windows. Naval
Research Logistics (NRL), 58(7):619–636.

Meisel, F. and Bierwirth, C. (2011). A unified approach for the evaluation
of quay crane scheduling models and algorithms. Computers & Operations
Research, 38(3):683–693.

Moccia, L., Cordeau, J.-F., Gaudioso, M., and Laporte, G. (2005). A branch-
and-cut algorithm for the quay crane scheduling problem in a container ter-
minal. Naval Research Logistics, 53(1):45–59.

Monaco, M. F. and Sammarra, M. (2011). Quay crane scheduling with time
windows, one-way and spatial constraints. International Journal of Shipping
and Transport Logistics, 3(4):454.

Msakni, M. K., Al-Salem, M., Diabat, A., Rabadi, G., and Kotachi, M. (2016).
An integrated quay crane assignment and scheduling problem using branch-
and-price. In 2016 International Conference on Computational Science and
Computational Intelligence (CSCI). IEEE.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2013). Hybrid evolution-
ary computation methods for quay crane scheduling problems. Computers &
Operations Research, 40(8):2083–2093.

Saini, S., Roy, D., and de Koster, R. (2017). A stochastic model for the through-
put analysis of passing dual yard cranes. Computers & Operations Research,
87:40–51.

Sammarra, M., Cordeau, J.-F., Laporte, G., and Monaco, M. F. (2007). A tabu
search heuristic for the quay crane scheduling problem. Journal of Scheduling,
10(4-5):327–336.

Unsal, O. and Oguz, C. (2013). Constraint programming approach to quay
crane scheduling problem. Transportation Research Part E: Logistics and
Transportation Review, 59:108–122.

Wang, J., Hu, H., and Song, Y. (2013). Optimization of quay crane scheduling
constrained by stability of vessels. Transportation Research Record: Journal
of the Transportation Research Board, 2330:47–54.

Wang, S., Zheng, J., Zheng, K., Guo, J., and Liu, X. (2012). Multi resource
scheduling problem based on an improved discrete particle swarm optimiza-
tion. Physics Procedia, 25:576–582.

Wang, Y. and Kim, K. H. (2009). A quay crane scheduling algorithm consid-
ering the workload of yard cranes in a container yard. Journal of Intelligent
Manufacturing, 22(3):459–470.

Wu, L. and Ma, W. (2017). Quay crane scheduling with draft and trim con-
straints. Transportation Research Part E: Logistics and Transportation Re-
view, 97:38–68.

Zhang, A., Zhang, W., Chen, Y., Chen, G., and Chen, X. (2017). Approximate
the scheduling of quay cranes with non-crossing constraints. European Journal
of Operational Research, 258(3):820–828.

Zhang, L., Khammuang, K., and Wirth, A. (2008). On-line scheduling with
non-crossing constraints. Operations Research Letters, 36(5):579–583.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix A. Results for Meisel and Bierwirth (2011) benchmark in-
stances

Table A.8: Results for set A and n = 10.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 507 507 507 - 507 -
2 506 507 506 1,111.4 506 527.9
3 506 507 506 747.8 506 186.7
4 505 507 505 3,215.1 505 1,626.7
5 506 508 507 184.4 507 83.1
6 505 507 505 525.6 506 5,890.0
7 506 507 507 116.3 507 185.1
8 506 507 506 257.7 506 148.6
9 505 507 505 505.0 505 194.8

10 505 507 505 651.6 505 250.9
avg. 731.6 avg. 909.4

(-) Negligible CPU time because LB = UB.

Table A.9: Results for set A and n = 15.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 507 507 507 - 507 -
2 505 507 505 649.2 505 1,266.1
3 507 507 507 - 507 -
4 505 506 506 241.8 506 221.6
5 505 506 505 175.4 505 188.2
6 506 507 506 328.4 506 120.5
7 506 507 506 670.9 506 1,436.1
8 506 507 506 371.3 506 120.0
9 506 507 506 594.7 506 322.5

10 507 507 507 - 507 -
avg. 303.3 avg. 367.5

(-) Negligible CPU time because LB = UB.

Table A.10: Results for set A and n = 20.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 506 507 506 231.1 506 145.7
2 505 507 505 32.9 505 531.6
3 506 507 506 1,818.5 506 334.1
4 506 507 506 577.2 506 266.6
5 505 507 505 975.5 505 242.9
6 506 507 506 407.5 506 148.4
7 506 506 506 - 506 -
8 506 507 506 896.4 506 176.6
9 506 507 506 423.6 506 769.7

10 505 507 505 766.1 505 216.8
avg. 612.9 avg. 283.2

(-) Negligible CPU time because LB = UB.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table A.11: Results for set A and n = 25.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 505 507 505 590.1 507 7,200.0
2 506 507 506 1,491.0 506 106.0
3 506 507 506 361.1 506 161.3
4 506 507 506 1,281.8 506 176.3
5 505 506 505 3,454.2 506 7,200.0
6 506 507 506 1,734.2 506 466.8
7 505 507 506 1,529.4 506 691.0
8 507 507 507 - 507 -
9 505 507 505 739.7 505 2,023.7

10 506 507 506 835.1 506 179.6
avg. 1,201.7 avg. 1,820.5

(-) Negligible CPU time because LB = UB.

Table A.12: Results for set A and n = 30.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 505 507 505 1,325.3 505 1,729.3
2 506 507 506 691.8 506 451.4
3 506 507 506 2,956.8 506 419.0
4 506 507 506 1,027.2 506 324.9
5 505 507 505 2,326.1 505 347.8
6 505 506 505 671.6 505 169.1
7 507 507 507 - 507 -
8 506 507 506 788.0 506 213.6
9 506 507 506 1,020.9 506 1,769.9

10 505 507 505 435.7 505 533.7
avg. 1,124.4 avg. 595.9

(-) Negligible CPU time because LB = UB.

Table A.13: Results for set A and n = 35.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 506 507 506 718.9 506 265.2
2 506 507 506 897.2 506 811.4
3 506 507 506 497.6 506 299.7
4 506 507 506 907.0 506 405.1
5 506 507 506 2,266.4 506 162.0
6 505 506 505 466.4 505 349.5
7 506 507 506 251.5 506 374.6
8 505 507 505 1,726.9 507 7,200.0
9 505 507 505 1,442.9 505 2,203.1

10 506 507 506 715.0 506 1,259.4
avg. 989.0 avg. 1,333.0

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table A.14: Results for set A and n = 40.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 505 507 505 903.7 507 7,200.0
2 505 507 505 1,702.6 505 579.9
3 505 507 505 551.1 505 1,245.4
4 506 507 506 229.4 506 116.1
5 505 507 505 2,048.9 505 2,516.5
6 505 507 505 3,911.2 505 1,240.6
7 507 507 507 - 507 -
8 506 507 506 1,011.9 506 204.6
9 506 507 506 797.4 506 348.6

10 506 507 506 2,947.1 506 365.2
avg. 1,410.4 avg. 1,381.7

(-) Negligible CPU time because LB = UB.

Table A.15: Results for set B and n = 45.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 755 758 755 166.5 755 157.5
2 756 756 756 - 756 -
3 756 758 756 1797.3 756 381.1
4 758 790 786 1336.0 786 372.8
5 755 757 755 1044.2 755 333.0
6 755 768 767 679.0 767 172.3
7 756 799 797 1143.2 797 592.0
8 757 758 757 154.6 757 94.5
9 755 799 797 556.0 797 94.7
10 756 794 791 2090.9 791 539.0

avg. 897.0 avg. 273.7
(-) Negligible CPU time because LB = UB.

Table A.16: Results for set B and n = 50.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 755 758 755 1032.5 755 297.6
2 755 770 769 861.9 769 144.4
3 756 773 771 885.8 771 616.7
4 757 758 757 452.3 757 225.9
5 755 757 755 301.5 755 225.2
6 755 758 755 4984.8 755 744.9
7 758 782 782 4.2 782 63.2
8 755 758 755 740.3 755 807.8
9 756 799 798 721.1 798 71.2
10 756 758 756 232.4 756 355.6

avg. 1,021.7 avg. 355.3

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table A.17: Results for set B and n = 55.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 755 758 755 3527.6 755 1387.5
2 757 780 778 809.2 778 291.0
3 755 780 779 1274.2 779 767.1
4 757 758 757 377.5 757 160.9
5 757 758 757 312.4 757 165.2
6 755 791 788 895.8 788 473.9
7 757 769 766 998.2 766 759.4
8 757 758 757 281.4 757 104.2
9 755 802 801 739.7 801 197.0
10 756 758 756 2132.8 756 322.6

avg. 1,134.9 avg. 462.9

Table A.18: Results for set B and n = 60.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 755 782 781 1191.6 781 720.5
2 755 758 755 290.3 755 323.7
3 756 758 756 805.0 756 467.6
4 757 761 759 904.3 759 982.7
5 755 758 755 3916.9 755 438.3
6 755 758 755 233.0 755 208.6
7 757 787 785 101.0 785 110.8
8 755 758 755 1531.5 755 220.7
9 756 786 785 750.1 785 59.3
10 756 806 805 938.3 805 337.7

avg. 1,066.2 avg. 387.0

Table A.19: Results for set B and n = 65.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 755 758 755 1904.2 755 721.4
2 799 799 799 - 799 -
3 755 804 802 965.7 802 475.1
4 757 758 757 1407.0 757 571.7
5 757 758 757 289.3 757 132.7
6 756 758 756 171.5 756 491.3
7 757 758 757 199.9 757 116.6
8 756 758 756 455.6 756 280.6
9 756 758 756 6405.7 756 1389.5
10 756 787 786 347.1 786 529.0

avg. 1,214.8 avg. 470.8
(-) Negligible CPU time because LB = UB.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table A.20: Results for set B and n = 70.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 755 758 755 771.6 755 525.5
2 755 758 755 226.6 755 75.7
3 755 758 755 914.9 755 410.9
4 757 758 757 1106.9 757 794.1
5 756 758 756 350.2 756 1252.6
6 755 762 761 383.3 761 124.1
7 757 758 757 105.0 757 158.2
8 756 758 756 267.4 756 256.0
9 755 758 755 1721.1 755 384.3
10 756 778 777 1192.9 777 341.4

avg. 704.0 avg. 432.3

Table A.21: Results for set C and n = 75.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 1005 1181 1180 7200.0 1178 2446.1
2 1007 1009 1007 6215.9 1007 1927.9
3 1005 1184 1184 7200.0 1182 2906.5
4 1006 1108 1108 7200.0 1108 7200.0
5 1007 1356 1194 7200.0 1192 2363.0
6 1007 1159 1123 7200.0 1122 7200.0
7 1007 1200 1200 27.4 1200 163.9
8 1007 1174 1174 19.6 1174 129.3
9 1006 1075 1074 7200.0 1072 7200.0
10 1069 1189 1188 3629.5 1188 484.0

avg. 5,309.2 avg. 3,202.1

Table A.22: Results for set C and n = 80.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 1005 1375 1175 7200.0 1173 2050.4
2 1005 1009 1007 7200.0 1006 7200.0
3 1006 1009 1006 6183.1 1006 6393.4
4 1008 1282 1203 7200.0 1201 3882.4
5 1007 1037 1036 2169.3 1036 188.6
6 1007 1118 1116 4819.6 1116 917.2
7 1008 1201 1201 20.6 1201 330.1
8 1007 1019 1016 4675.0 1016 6255.0
9 1020 1194 1192 6823.2 1192 588.0
10 1116 1208 1205 5302.6 1205 2062.8

avg. 5,159.3 avg. 2,986.8

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table A.23: Results for set C and n = 85.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 1006 1094 1049 7200.0 1094 7200.0
2 1007 1009 1009 7200.0 1008 7200.0
3 1006 1028 1026 7010.9 1026 1546.3
4 1007 1187 1187 7200.0 1185 3396.3
5 1006 1083 1081 7003.5 1081 5235.5
6 1006 1009 1006 5009.6 1007 7200.0
7 1006 1389 1197 7200.0 1194 2710.2
8 1007 1106 1105 502.2 1105 783.1
9 1007 1009 1007 3472.4 1007 2250.1
10 1166 1166 1166 - 1166 -

avg. 5,179.9 avg. 3,752.1
(-) Negligible CPU time because LB = UB.

Table A.24: Results for set C and n = 90.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 1007 1009 1007 2799.5 1008 7200.0
2 1006 1009 1006 4237.1 1006 2298.4
3 1006 1009 1007 7200.0 1006 2186.1
4 1007 1087 1064 7200.0 1063 7200.0
5 1062 1062 1062 - 1062 -
6 1007 1196 1195 7200.0 1193 943.3
7 1007 1110 1110 7200.0 1106 5685.1
8 1007 1094 1094 15.8 1094 89.9
9 1007 1077 1073 6513.2 1074 7200.0
10 1049 1049 1049 - 1049 -

avg. 4,237.3 avg. 3,280.3
(-) Negligible CPU time because LB = UB.

Table A.25: Results for set C and n = 95.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 1006 1176 1176 7200.0 1174 2495.8
2 1007 1091 1090 7200.0 1088 3382.6
3 1007 1009 1008 7200.0 1007 2024.1
4 1007 1140 1140 7200.0 1137 4456.9
5 1007 1145 1144 7200.0 1143 1048.7
6 1006 1056 1054 7200.0 1054 2985.1
7 1007 1172 1172 20.0 1172 346.7
8 1006 1009 1006 5809.3 1006 5344.9
9 1019 1019 1019 - 1019 -
10 1006 1009 1007 7200.0 1006 6684.6

avg. 5,622.9 avg. 2,876.9
(-) Negligible CPU time because LB = UB.

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table A.26: Results for set C and n = 100.
LB UB F1 BSA

Sol. CPU Sol. CPU

1 1007 1009 1007 3161.6 1007 6031.5
2 1007 1105 1103 7200.0 1103 2915.4
3 1007 1108 1107 3624.2 1107 597.8
4 1007 1362 1204 7200.0 1202 7200.0
5 1007 1009 1007 3426.3 1007 1270.5
6 1007 1138 1137 7200.0 1136 1461.0
7 1006 1099 1098 7200.0 1099 7200.0
8 1151 1151 1151 - 1151 -
9 1006 1009 1007 7200.0 1006 1774.4
10 1007 1009 1007 2323.6 1007 2200.0

avg. 4,853.6 avg. 3,065.1
(-) Negligible CPU time because LB = UB.

38

